The complete classification of unital graph C?-algebras: Geometric and strong
نویسندگان
چکیده
We provide a complete classification of the class unital graph $C^*$-algebras - prominently containing full family Cuntz-Krieger algebras showing that Morita equivalence in this case is determined by ordered, filtered $K$-theory. The result geometric sense it establishes any between $C^*(E)$ and $C^*(F)$ can be realized sequence moves leading from $E$ to $F$, way resembling role Reidemeister on knots. As key ingredient, we introduce new such moves, establish they leave invariant, prove after augmentation, list becomes described above. Along way, every reduced $K$-theory isomorphism lifted an stabilized and, as consequence, preserving unit comes $*$-isomorphism themselves. It follows question amongst decidable one. immediate examples applications our results revisit problem for quantum lens spaces verify, case, Abrams-Tomforde conjectures.
منابع مشابه
Isomorphisms in unital $C^*$-algebras
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
متن کاملJordan ∗−homomorphisms between unital C∗−algebras
Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...
متن کاملProperty (T) for non-unital C ∗-algebras ∗
Inspired by the recent work of Bekka, we study two reasonable analogues of property (T ) for not necessarily unital C∗-algebras. The stronger one of the two is called “property (T )” and the weaker one is called “property (Te)”. It is shown that all non-unital C*-algebras do not have property (T ) (neither do their unitalizations). Moreover, all non-unital σ-unital C*-algebras do not have prope...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولisomorphisms in unital $c^*$-algebras
it is shown that every almost linear bijection $h : arightarrow b$ of a unital $c^*$-algebra $a$ onto a unital$c^*$-algebra $b$ is a $c^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in a$, all $y in a$, and all $nin mathbb z$, andthat almost linear continuous bijection $h : a rightarrow b$ of aunital $c^*$-algebra $a$ of real rank zero onto a unital$c^*$-algebra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2021
ISSN: ['1547-7398', '0012-7094']
DOI: https://doi.org/10.1215/00127094-2021-0060